News
Webinar: Introducing SENSOCELL
In this webinar we will introduce the system, answer your questions and show some application examples including the latest data acquired with SENSOCELL on microrheology and cells nucleus indentation tests. We are looking forward to your attendance.
Collaborations to carry out cutting edge research
Impetux collaborates with several Mechanobiology Research projects. Nucleux is one of them. With an interdisciplinary vision: physics, biology, mathematics and medicine, the project aims to understand the basic mechanisms behind the complexity of the cell nucleus, and...
Microrheology of soft biological samples using SENSOCELL optical tweezers.
Already available an application note where we show how SENSOCELL optical tweezers can be used to measure the viscoelastic properties of soft hydrogels, extracellular matrices or living cells, with stiffnesses ranging from tens of Pa to several kPa and at probing...
H2020 Funding
We are pleased to announce that we have been awarded with the European Comission funding (SME phase 1 instrument), to explore and validate a revolutionary application of our patented technology for force measurement in tissues and living cells. The innovation that...
IMPETUX at the 3rd European Chemokine and Cell Migration Conference
The Impetux team will be at the 3rd European Chemokine and Cell Migration Conference that will take place from 26 to 39 June 2019 in Salamanca, Spain. We will be there to show and explain how our turnkey optical tweezers systems designed for mechanobiology studies in...
IMPETUX at the EMBO workshop: Cell polarity and membrane dynamics
The Impetux team will be at the EMBO workshop: Cell polarity and membrane dynamics that will take place from 26 to 31 May 2019 in Sant Feliu de Guixols, Spain. We will be there to show and explain how our turnkey optical tweezers systems designed for mechanobiology...
Events
Mechanobiology of Morphogenesis Conferences
IMPETUX will be present at the Mechanobiology of Morphogenesis Conferences, hold on OCTOBER 28-30, 2020 in SINGAPORE with a virtual booth. If you are interested in our latest developments an applications of SENSOCELL, do not hesitate to visit us there! Where → Mechanobiology of Morphogenesis Conferences When → 28-30 October 2020 How → Register here. More news:
Webinar: Introducing SENSOCELL
In this webinar we will introduce the system, answer your questions and show some application examples including the latest data acquired with SENSOCELL on microrheology and cells nucleus indentation tests. We are looking forward to your attendance.
Cell Physics 2019
IMPETUX at Cell Physics From the 9th to the 11th of October we will have the pleasure to be at Cell Physics 2019 at the Saarland University in Saarbrücken, Germany. A conference organized by the Collaborative Research Center SFB 1027 “Physical modeling of non-equilibrium processes in biological systems”. There, we will be delighted to share with you all the news related with our systems, the solutions and the amazing new opportunities they offer related with Cell mechanics, mechanobiology,...
Scientific Publications
Here you will find useful material published related with IMPETUX’s technology and products.
Publications from IMPETUX’s customers:
- Corbyn Jones, Mauricio Gomez, Ryan M. Muoio, Alex Vidal, Anthony Mcknight, Nicholas D. Brubaker, Wylie W. Ahmed. “Stochastic force dynamics of the model microswimmer Chlamydomonas reinhardtii: Active forces and energetics“. ioRxiv 2011.12415. This article is a preprint.
In this work, the authors use a customized optical trapping system from IMPETUX to study the stochastic force dynamics of a model microswimmer (Chlamydomonas reinhardtii). In particular, they directly measure the stochastic forces generated by the microswimmer using an optical trap via the photon momentum method.
In this work, the authors use optical tweezers to show intracellular softening, fluidification and decrease of active forces in mitosis that is mediated by a surprising role switch between microtubules and actin.
Impetux’s force sensor is used to measure the cytoplasm’s fluidity and sitffness changes of dividing cells.
It is the first time that the cell mechanics is characterized during mitosis from the inside
- This article is a preprint.
In this work, researchers used our SENSOCELL Optical Tweezers platform in combination with Confocal microscopy to study neuron Ca2+ dynamics during axon membrane tether extrusion experiments.
- V. Venturi, F. Pezzano, F. Català-Castro, H.- M. Häkkinen, S. Jiménez-Delgado, M. Colomer-Rosell, M. Marro-Sánchez, Q. Tolosa-Ramon, S. Paz-López, M. A. Valverde, P. Loza-Alvarez, M. Krieg, S. Wieser and V. Ruprecht, “The nucleus measures shape deformation for cellular proprioception and regulates adaptive morphodynamics,” SCIENCE | 16 Oct 2020: Vol. 370, Issue 6514, eaba2644. DOI: 10.1126/science.aba2644
For additional information, have a look at:
- R. Ombid, G. Oyong, E. Cabrera, W. Espulgar, M. Saito, E. Tamiya, and R. Pobre, “In-vitro study of monocytic THP-1 leukemia cell membrane elasticity with a single-cell microfluidic-assisted optical trapping system,” Biomed. Opt. Express 11, 6027-6037 (2020).
In this study, the authors used a customized optical trapping system from IMPETUX to characterize cell membrane elasticity as a new potential biomarker for leukemia cells, comparing measurements for cells treated with anti-cancer drugs and untreated cells.
- R. Meissner, N. Oliver and C.Denz. “Optical Force Sensing with Cylindrical Microcontainers“.Part. Part. Syst. Charact. 2018, 1800062.
- F.Català, F. Marsà, M. Montes Usategui, A. Farré & E. Martín-Badosa. “Influence of experimental parameters on the laser heating of an optical trap“. Sci. Rep. 7, 16052; doi:10.1038/s41598-017-15904-6 (2017).
- Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).
Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.
- R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. “Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.
Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.
Papers about IMPETUX’s technology:
- Franziska Strasser, Simon Moser, Monika Ritsch-Marte, and Gregor Thalhammer, “Direct measurement of individual optical forces in ensembles of trapped particles,” Optica 8, 79-87 (2021)
In this work the authors have developed a technique that allows to combine the “momentum method” for measuring forces with multiple holographic optical traps.
- Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers” 15th workshop on Information Optics (WIO), 2016.
- Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).
In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.
- Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).
“Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”
- Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
- Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
- Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).
Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at: http://bioweb.bio.uci.edu/sgross/publications.html
- A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
- A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
- J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”, Proc. SPIE 9164, 91640U (2014).
- F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
- A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).
This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.
- A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).
In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.